Mini Diploma in Artificial Intelligence and Machine Learning
Duration: 1 Month
Mode: Online Self-Study
Target Audience: Beginners interested in AI and ML concepts
Outcomes:
- Understanding of core AI/ML concepts.
- Ability to implement basic ML models using Python.
- Insights into AI ethics and real-world applications.
Course Structure and Weekly Breakdown
Week 1: Foundations of AI and ML
Objective: Understand the basics of AI, ML, and their significance.
Introduction to Artificial Intelligence (AI):
- Definition and history of AI.
- Applications of AI in industries.
- Key differences: AI, ML, Deep Learning, and Data Science.
Introduction to Machine Learning (ML):
- Definition and types of ML: Supervised, Unsupervised, Reinforcement Learning.
- The ML workflow: Data Collection, Preprocessing, Training, Testing, and Deployment.
Key Algorithms Overview:
- Linear Regression, Logistic Regression, k-Nearest Neighbors (k-NN).
Python Basics for AI/ML:
- Setting up Python for ML (Anaconda, Jupyter Notebook).
- Libraries: NumPy, Pandas, Matplotlib.
Assignments:
- Watch introductory videos on AI/ML.
- Complete a quiz on the history and applications of AI.
- Practice Python coding basics.
Week 2: Machine Learning Workflow and Algorithms
Objective: Dive into the ML process and explore key algorithms.
Data Preprocessing and Visualization:
- Handling missing data.
- Scaling and normalizing data.
- Visualizing data using Matplotlib and Seaborn.
Supervised Learning Algorithms:
- Linear Regression and Logistic Regression in detail.
- Hands-on coding with datasets.
Unsupervised Learning Algorithms:
- Clustering: k-Means Clustering.
- Dimensionality Reduction: Principal Component Analysis (PCA).
Model Evaluation:
- Metrics: Accuracy, Precision, Recall, F1 Score.
- Cross-validation.
Assignments:
- Preprocess and visualize a dataset.
- Implement and evaluate a simple Linear Regression model.
Week 3: Practical Implementation and Tools
Objective: Develop hands-on skills in implementing ML models.
Building ML Models in Python:
- Working with Scikit-learn.
- Training and testing models.
Real-World Applications:
- Sentiment Analysis using Natural Language Processing (NLP).
- Predictive analysis (e.g., predicting house prices).
Introduction to Neural Networks:
- Basics of Deep Learning and Neural Networks.
- Using TensorFlow/Keras for beginners.
Mini Project Preparation:
- Define a problem statement.
- Collect and preprocess data.
Assignments:
- Build and train an ML model on a given dataset.
- Start working on the mini project.
Week 4: Ethical AI, Trends, and Project Completion
Objective: Explore AI ethics and present a complete project.
AI Ethics and Societal Impact:
- Bias in AI.
- Ethical frameworks for AI usage.
- Responsible AI development.
Emerging Trends in AI:
- Generative AI (e.g., ChatGPT).
- Autonomous systems.
Final Project Submission and Feedback:
- Complete and document the mini project.
- Submit project reports and receive feedback.
Assignments:
- Write an essay on AI ethics.
- Complete and present the mini project.
Mini Project Ideas
- Predicting house prices using Linear Regression.
- Customer segmentation using k-Means Clustering.
- Sentiment analysis on social media data.
Evaluation Criteria
- Weekly quizzes (20%).
- Assignments and coding tasks (30%).
- Final project submission and presentation (50%).
Recommended Tools and Resources
- Platforms: Google Colab, Jupyter Notebook.
- Datasets: Kaggle, UCI Machine Learning Repository.
- Books/References:
- “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow” by Aurélien Géron.
- Online tutorials (e.g., Coursera, YouTube channels like “StatQuest”).
Syllabus Overview – English Version
Week 1: Foundations of AI and ML
- Introduction to Artificial Intelligence (AI): History, applications, and types.
- Basics of Machine Learning (ML): Types of learning and the ML workflow.
- Overview of key ML algorithms: Linear Regression, Logistic Regression, k-NN.
- Python setup for AI/ML (Anaconda, Jupyter Notebook), basics of NumPy, Pandas.
Week 2: ML Workflow and Algorithms
- Data preprocessing, handling missing values, data visualization (Matplotlib, Seaborn).
- Supervised Learning Algorithms: Linear Regression and Logistic Regression with coding.
- Unsupervised Learning: Clustering (k-Means), Dimensionality Reduction (PCA).
- Model evaluation: Accuracy, Precision, Recall, F1 Score, Cross-validation.
Week 3: Practical Implementation and Tools
- Hands-on with Scikit-learn: Training and testing models.
- Real-world applications: Sentiment analysis (NLP), predictive analysis (house prices).
- Introduction to Neural Networks using TensorFlow/Keras.
- Mini Project Preparation.
Week 4: AI Ethics, Trends, and Final Project
- Ethics in AI: Bias, fairness, responsible AI.
- Emerging AI trends: Generative AI (ChatGPT), autonomous systems.
- Final project completion and presentation.
විෂය නිර්දේශය – Sinhala Version
1 වන සතිය: AI සහ ML මූලිකතා
- Artificial Intelligence (AI) පිළිබඳ හැදින්වීම: ඉතිහාසය, යෙදුම්, සහ වර්ග.
- Machine Learning (ML) මූලිකතා: ඉගෙනුම් වර්ග, සහ ML ක්රියා ප්රවාහය.
- ප්රධාන ML අලගෝරිදම් වල සාරාංශය: රේඛීය ප්රතිසන්ධානය (Linear Regression), ලොජිස්ටික් ප්රතිසන්ධානය (Logistic Regression), k-NN.
- Python සැකසුම: Anaconda, Jupyter Notebook. NumPy සහ Pandas මූලිකාංග.
2 වන සතිය: ML ක්රියා ප්රවාහය සහ අලගෝරිදම්
- දත්ත ප්රාථමික සැකසීම, අස්වැන්න පිරවීම, දත්ත දැක්ම (Matplotlib, Seaborn).
- පරීක්ෂණාත්මක ඉගෙනුම: රේඛීය ප්රතිසන්ධානය සහ ලොජිස්ටික් ප්රතිසන්ධානය කේතන සමඟ.
- අපරීක්ෂණාත්මක ඉගෙනුම: Clustering (k-Means), Dimensionality Reduction (PCA).
- ආදර්ශ මිනුම්: නිවැරදිභාවය, නිරවද්යතාව, කැඳවීම, F1 ලකුණු, Cross-validation.
3 වන සතිය: ප්රායෝගික ක්රියාකාරකම් සහ මෙවලම්
- Scikit-learn සමඟ අත්හදා බලන්න: ආදර්ශ පුහුණු කිරීම සහ පරීක්ෂා කිරීම.
- සත්ය ලෝක යෙදුම්: සංවේදන විශ්ලේෂණය (NLP), අනාවැකි විශ්ලේෂණය (ගෘහ මිල).
- Neural Networks පිළිබඳ හැඳින්වීම: TensorFlow/Keras භාවිතයෙන්.
- Mini Project සූදානම් කිරීම.
4 වන සතිය: AI නීතිමය, ප්රවණතා, සහ අවසාන ව්යාපෘතිය
- AI නීතිමය: වාසනාව, සාධාරණභාවය, වගකිවයුතු AI.
- නවතම AI ප්රවණතා: Generative AI (ChatGPT), ස්වයංක්රීය පද්ධති.
- අවසාන ව්යාපෘතිය සම්පූර්ණ කිරීම සහ ඉදිරිපත් කිරීම.
Assignments and Project Ideas
Assignments:
- Practice Python basics and ML concepts weekly.
- Preprocess, visualize datasets, and implement small models.
Project Ideas:
- Predict house prices (Linear Regression).
- Sentiment analysis on product reviews (NLP).
- Customer segmentation (k-Means Clustering).