Curriculum
Course: Artificial intelligence (AI) and machine...
Login
Text lesson

Mini Diploma in Artificial Intelligence and Machine Learning

Mini Diploma in Artificial Intelligence and Machine Learning

Duration: 1 Month
Mode: Online Self-Study
Target Audience: Beginners interested in AI and ML concepts
Outcomes:

  • Understanding of core AI/ML concepts.
  • Ability to implement basic ML models using Python.
  • Insights into AI ethics and real-world applications.

Course Structure and Weekly Breakdown

Week 1: Foundations of AI and ML

Objective: Understand the basics of AI, ML, and their significance.

  1. Introduction to Artificial Intelligence (AI):

    • Definition and history of AI.
    • Applications of AI in industries.
    • Key differences: AI, ML, Deep Learning, and Data Science.
  2. Introduction to Machine Learning (ML):

    • Definition and types of ML: Supervised, Unsupervised, Reinforcement Learning.
    • The ML workflow: Data Collection, Preprocessing, Training, Testing, and Deployment.
  3. Key Algorithms Overview:

    • Linear Regression, Logistic Regression, k-Nearest Neighbors (k-NN).
  4. Python Basics for AI/ML:

    • Setting up Python for ML (Anaconda, Jupyter Notebook).
    • Libraries: NumPy, Pandas, Matplotlib.

Assignments:

  • Watch introductory videos on AI/ML.
  • Complete a quiz on the history and applications of AI.
  • Practice Python coding basics.

Week 2: Machine Learning Workflow and Algorithms

Objective: Dive into the ML process and explore key algorithms.

  1. Data Preprocessing and Visualization:

    • Handling missing data.
    • Scaling and normalizing data.
    • Visualizing data using Matplotlib and Seaborn.
  2. Supervised Learning Algorithms:

    • Linear Regression and Logistic Regression in detail.
    • Hands-on coding with datasets.
  3. Unsupervised Learning Algorithms:

    • Clustering: k-Means Clustering.
    • Dimensionality Reduction: Principal Component Analysis (PCA).
  4. Model Evaluation:

    • Metrics: Accuracy, Precision, Recall, F1 Score.
    • Cross-validation.

Assignments:

  • Preprocess and visualize a dataset.
  • Implement and evaluate a simple Linear Regression model.

Week 3: Practical Implementation and Tools

Objective: Develop hands-on skills in implementing ML models.

  1. Building ML Models in Python:

    • Working with Scikit-learn.
    • Training and testing models.
  2. Real-World Applications:

    • Sentiment Analysis using Natural Language Processing (NLP).
    • Predictive analysis (e.g., predicting house prices).
  3. Introduction to Neural Networks:

    • Basics of Deep Learning and Neural Networks.
    • Using TensorFlow/Keras for beginners.
  4. Mini Project Preparation:

    • Define a problem statement.
    • Collect and preprocess data.

Assignments:

  • Build and train an ML model on a given dataset.
  • Start working on the mini project.

Week 4: Ethical AI, Trends, and Project Completion

Objective: Explore AI ethics and present a complete project.

  1. AI Ethics and Societal Impact:

    • Bias in AI.
    • Ethical frameworks for AI usage.
    • Responsible AI development.
  2. Emerging Trends in AI:

    • Generative AI (e.g., ChatGPT).
    • Autonomous systems.
  3. Final Project Submission and Feedback:

    • Complete and document the mini project.
    • Submit project reports and receive feedback.

Assignments:

  • Write an essay on AI ethics.
  • Complete and present the mini project.

Mini Project Ideas

  1. Predicting house prices using Linear Regression.
  2. Customer segmentation using k-Means Clustering.
  3. Sentiment analysis on social media data.

Evaluation Criteria

  1. Weekly quizzes (20%).
  2. Assignments and coding tasks (30%).
  3. Final project submission and presentation (50%).

Recommended Tools and Resources

  • Platforms: Google Colab, Jupyter Notebook.
  • Datasets: Kaggle, UCI Machine Learning Repository.
  • Books/References:
    • “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow” by Aurélien Géron.
    • Online tutorials (e.g., Coursera, YouTube channels like “StatQuest”).

Syllabus Overview – English Version

Week 1: Foundations of AI and ML

  • Introduction to Artificial Intelligence (AI): History, applications, and types.
  • Basics of Machine Learning (ML): Types of learning and the ML workflow.
  • Overview of key ML algorithms: Linear Regression, Logistic Regression, k-NN.
  • Python setup for AI/ML (Anaconda, Jupyter Notebook), basics of NumPy, Pandas.

Week 2: ML Workflow and Algorithms

  • Data preprocessing, handling missing values, data visualization (Matplotlib, Seaborn).
  • Supervised Learning Algorithms: Linear Regression and Logistic Regression with coding.
  • Unsupervised Learning: Clustering (k-Means), Dimensionality Reduction (PCA).
  • Model evaluation: Accuracy, Precision, Recall, F1 Score, Cross-validation.

Week 3: Practical Implementation and Tools

  • Hands-on with Scikit-learn: Training and testing models.
  • Real-world applications: Sentiment analysis (NLP), predictive analysis (house prices).
  • Introduction to Neural Networks using TensorFlow/Keras.
  • Mini Project Preparation.

Week 4: AI Ethics, Trends, and Final Project

  • Ethics in AI: Bias, fairness, responsible AI.
  • Emerging AI trends: Generative AI (ChatGPT), autonomous systems.
  • Final project completion and presentation.

විෂය නිර්දේශය – Sinhala Version

1 වන සතිය: AI සහ ML මූලිකතා

  • Artificial Intelligence (AI) පිළිබඳ හැදින්වීම: ඉතිහාසය, යෙදුම්, සහ වර්ග.
  • Machine Learning (ML) මූලිකතා: ඉගෙනුම් වර්ග, සහ ML ක්‍රියා ප්‍රවාහය.
  • ප්‍රධාන ML අලගෝරිදම් වල සාරාංශය: රේඛීය ප්‍රතිසන්ධානය (Linear Regression), ලොජිස්ටික් ප්‍රතිසන්ධානය (Logistic Regression), k-NN.
  • Python සැකසුම: Anaconda, Jupyter Notebook. NumPy සහ Pandas මූලිකාංග.

2 වන සතිය: ML ක්‍රියා ප්‍රවාහය සහ අලගෝරිදම්

  • දත්ත ප්‍රාථමික සැකසීම, අස්වැන්න පිරවීම, දත්ත දැක්ම (Matplotlib, Seaborn).
  • පරීක්ෂණාත්මක ඉගෙනුම: රේඛීය ප්‍රතිසන්ධානය සහ ලොජිස්ටික් ප්‍රතිසන්ධානය කේතන සමඟ.
  • අපරීක්ෂණාත්මක ඉගෙනුම: Clustering (k-Means), Dimensionality Reduction (PCA).
  • ආදර්ශ මිනුම්: නිවැරදිභාවය, නිරවද්‍යතාව, කැඳවීම, F1 ලකුණු, Cross-validation.

3 වන සතිය: ප්‍රායෝගික ක්‍රියාකාරකම් සහ මෙවලම්

  • Scikit-learn සමඟ අත්හදා බලන්න: ආදර්ශ පුහුණු කිරීම සහ පරීක්ෂා කිරීම.
  • සත්‍ය ලෝක යෙදුම්: සංවේදන විශ්ලේෂණය (NLP), අනාවැකි විශ්ලේෂණය (ගෘහ මිල).
  • Neural Networks පිළිබඳ හැඳින්වීම: TensorFlow/Keras භාවිතයෙන්.
  • Mini Project සූදානම් කිරීම.

4 වන සතිය: AI නීතිමය, ප්‍රවණතා, සහ අවසාන ව්‍යාපෘතිය

  • AI නීතිමය: වාසනාව, සාධාරණභාවය, වගකිවයුතු AI.
  • නවතම AI ප්‍රවණතා: Generative AI (ChatGPT), ස්වයංක්‍රීය පද්ධති.
  • අවසාන ව්‍යාපෘතිය සම්පූර්ණ කිරීම සහ ඉදිරිපත් කිරීම.

Assignments and Project Ideas

Assignments:

  • Practice Python basics and ML concepts weekly.
  • Preprocess, visualize datasets, and implement small models.

Project Ideas:

  • Predict house prices (Linear Regression).
  • Sentiment analysis on product reviews (NLP).
  • Customer segmentation (k-Means Clustering).